Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(17): 5332-5341, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634554

RESUMEN

Alloying-type anode materials provide high capacity for lithium-ion batteries; however, they suffer pulverization problems resulting from the volume change during cycling. Realizing the cycling reversibility of these anodes is therefore critical for sustaining their electrochemical performance. Here, we investigate the structural reversibility of Sn NPs during cycling at atomic-level resolution utilizing in situ high-resolution TEM. We observed a surprisingly near-perfect structural reversibility after a complete cycle. A three-step phase transition happens during lithiation, accompanied by the generation of a significant number of defects, grain boundaries, and up to 202% volume expansion. In subsequent delithiation, the volume, morphology, and crystallinity of the Sn NPs were restored to their initial state. Theoretical calculations show that compressive stress drives the removal of vacancies generated within the NPs during delithiation, therefore maintaining their intact morphology. This work demonstrates that removing vacancies during cycling can efficiently improve the structural reversibility of high-capacity anode materials.

2.
ACS Appl Mater Interfaces ; 16(14): 17673-17682, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533740

RESUMEN

Passivation of the magnesium (Mg) anode in the chloride-free electrolytes using commercially available Mg salts is a critical issue for rechargeable Mg batteries. Herein, a high donor number cosolvent of 1-methylimidazolium (MeIm) is introduced into Mg(TFSI)2- and Mg(HMDS)2-based electrolytes to address the passivation problem and realize highly reversible Mg plating/stripping. Theoretical calculations and experimental characterization results reveal that the strong coordination ability of MeIm with Mg2+ can weaken the anion-cation interactions and promote the formation of free anions that have higher reduction stability, thus significantly suppressing anion-derived passivation layer formation. By adding MeIm cosolvent into Mg(TFSI)2-based electrolyte, the average Coulombic efficiency of the Mg//Cu cell is increased from less than 20% to over 90%, and the Mg//Mg cell can stably cycle for over 800 h with a low overpotential. In the MeIm-regulated Mg(HMDS)2-based electrolyte, the solvation structure change, featured by an effective separation of Mg2+ and HMDS-, greatly increases the ionic conductivity by more than 30 times. This solvation structure regulation strategy for noncorrosive electrolytes of commercially available Mg salts has a great potential for application in future rechargeable Mg metal batteries.

3.
Small Methods ; 8(1): e2300754, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37821416

RESUMEN

Up to now, only a small portion of Si has been utilized in the anode for commercial lithium-ion batteries (LIBs) despite its high energy density. The main challenge of using micron-sized Si anode is the particle crack and pulverization due to the volume expansion during cycling. This work proposes a type of Si-based high-entropy alloy (HEA) materials with high structural stability for the LIB anode. Micron-sized HEA-Si anode can deliver a capacity of 971 mAhg-1 and retains 93.5% of its capacity after 100 cycles. In contrast, the silicon-germanium anode only retains 15% of its capacity after 20 cycles. This study has discovered that including HEA elements in Si-based anode can decrease its anisotropic stress and consequently enhance ductility at discharged state. By utilizing in situ X-ray diffraction and transmission electron microscopy analyses, a high-entropy transition metal doped Lix (Si/Ge) phase is found at lithiated anode, which returns to the pristine HEA phase after delithiation. The reversible lithiation and delithiation process between the HEA phases leads to intrinsic stability during cycling. These findings suggest that incorporating high-entropy modification is a promising approach in designing anode materials toward high-energy density LIBs.

4.
Angew Chem Int Ed Engl ; 62(11): e202215802, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36650422

RESUMEN

The polysulfide (PS) dissolution and low conductivity of lithium sulfides (Li2 S) are generally considered the main reasons for limiting the reversible capacity of the lithium-sulfur (Li-S) system. However, as the inevitable intermediate between PSs and Li2 S, lithium disulfide (Li2 S2 ) evolutions are always overlooked. Herein, Li2 S2 evolutions are monitored from the operando measurements on the pouch cell level. Results indicate that Li2 S2 undergoes slow electrochemical reduction and chemical disproportionation simultaneously during the discharging process, leading to further PS dissolution and Li2 S generation without capacity contribution. Compared with the fully oxidized Li2 S, Li2 S2 still residues at the end of the charging state. Therefore, instead of the considered Li2 S and PSs, slow electrochemical conversions and side chemical reactions of Li2 S2 are the determining factors in limiting the sulfur utilization, corresponding to the poor reversible capacity of Li-S batteries.

5.
Nat Commun ; 14(1): 111, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611034

RESUMEN

Two-dimensional (2D) semiconductors are promising in channel length scaling of field-effect transistors (FETs) due to their excellent gate electrostatics. However, scaling of their contact length still remains a significant challenge because of the sharply raised contact resistance and the deteriorated metal conductivity at nanoscale. Here, we construct a 1D semimetal-2D semiconductor contact by employing single-walled carbon nanotube electrodes, which can push the contact length into the sub-2 nm region. Such 1D-2D heterostructures exhibit smaller van der Waals gaps than the 2D-2D ones, while the Schottky barrier height can be effectively tuned via gate potential to achieve Ohmic contact. We propose a longitudinal transmission line model for analyzing the potential and current distribution of devices in short contact limit, and use it to extract the 1D-2D contact resistivity which is as low as 10-6 Ω·cm2 for the ultra-short contacts. We further demonstrate that the semimetal nanotubes with gate-tunable work function could form good contacts to various 2D semiconductors including MoS2, WS2 and WSe2. The study on 1D semimetal contact provides a basis for further miniaturization of nanoelectronics in the future.

6.
Nano Lett ; 22(19): 8008-8017, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018258

RESUMEN

Lithium metal anode possesses overwhelming capacity and low potential but suffers from dendrite growth and pulverization, causing short lifespan and low utilization. Here, a fundamental novel insight of using single-atomic catalyst (SAC) activators to boost lithium atom diffusion is proposed to realize delocalized deposition. By combining electronic microscopies, time-of-flight secondary ion mass spectrometry, theoretical simulations, and electrochemical analyses, we have unambiguously depicted that the SACs serve as kinetic activators in propelling the surface spreading and lateral redistribution of the lithium atoms for achieving dendrite-free plating morphology. Under the impressive capacity of 20 mA h cm-2, the Li modified with SAC-activator exhibits a low overpotential of ∼50 mV at 5 mA cm-2, a long lifespan of 900 h, and high Coulombic efficiencies during 150 cycles, much better than most literature reports. The so-coupled lithium-sulfur full battery delivers high cycling and rate performances, showing great promise toward the next-generation lithium metal batteries.

7.
Adv Mater ; 34(30): e2203783, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35657273

RESUMEN

Passivation of the Mg anode surface in conventional electrolytes constitutes a critical issue for practical Mg batteries. In this work, a perfluorinated tert-butoxide magnesium salt, Mg(pftb)2 , is codissolved with MgCl2 in tetrahydrofuran (THF) to form an all-magnesium salt electrolyte. Raman spectroscopy and density function theory calculation confirm that [Mg2 Cl3 ·6THF]+ [Mg(pftb)3 ]- is the main electrochemically active species of the electrolyte. The proper lowest unoccupied molecular orbital energy level of the [Mg(pftb)3 ]- anion enables in situ formation of a stable solid electrolyte interphase (SEI) on Mg anodes. A detailed analysis of the SEI reveals that its stability originates from a dual-layered organic/inorganic hybrid structure. Mg//Cu and Mg//Mg cells using the electrolyte achieve a high Coulombic efficiency of 99.7% over 3000 cycles, and low overpotentials over ultralong-cycle lives of 8100, 3000, and 1500 h at current densities of 0.5, 1.0, and 2.0 mA cm-2 , respectively. The robust SEI layer, once formed on a Mg electrode, is also shown highly effective in suppressing side-reactions in a TFSI- -containing electrolyte. A high Coulombic efficiency of 99.5% over 800 cycles is also demonstrated for a Mg//Mo6 S8 full cell, showing great promise of the SEI forming electrolyte in future Mg batteries.

8.
Proc Natl Acad Sci U S A ; 119(17): e2119016119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452312

RESUMEN

Low-dimensional semimetal­semiconductor (Sm-S) van der Waals (vdW) heterostructures have shown their potentials in nanoelectronics and nano-optoelectronics recently. It is an important scientific issue to study the interfacial charge transfer as well as the corresponding Fermi-level shift in Sm-S systems. Here we investigated the gate-tunable contact-induced Fermi-level shift (CIFS) behavior in a semimetal single-walled carbon nanotube (SWCNT) that formed a heterojunction with a transition-metal dichalcogenide (TMD) flake. A resistivity comparison methodology and a Fermi-level catch-up model have been developed to measure and analyze the CIFS, whose value is determined by the resistivity difference between the naked SWCNT segment and the segment in contact with the TMD. Moreover, the relative Fermi-level positions of SWCNT and two-dimensional (2D) semiconductors can be efficiently reflected by the gate-tunable resistivity difference. The work function change of the semimetal, as a result of CIFS, will naturally introduce a modified form of the Schottky­Mott rule, so that a modified Schottky barrier height can be obtained for the Sm-S junction. The methodology and physical model should be useful for low-dimensional reconfigurable nanodevices based on Sm-S building blocks.

9.
ACS Appl Mater Interfaces ; 14(5): 6499-6506, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080363

RESUMEN

Dendrite formation is an important issue for the metal anode-based battery system. The traditional perception that Mg metal anode does not grow dendrite during operation has been challenged recently. Herein, we investigate the Mg electrodeposition behavior in a 0.3 M all-phenyl-complex (APC) electrolyte and confirm that Mg dendrites are readily formed at high current densities. A semiquantitative model indicates that the Mg-ion concentration on the electrode surface, limited by the intrinsic diffusion coefficient of the Mg cation group, decreases with increasing current density, resulting in an extra concentration polarization. However, Mg deposition at the tip of a protrusion on the electrode surface is hardly affected by the concentration polarization, and thus dendrite growth is more prone to occur at the tips. We find that the addition of LiCl in conventional APC electrolytes can suppress the Mg dendrite formation, mainly as a result of the enhanced Mg cation diffusion coefficient due to the influence of the LiCl additive, rather than the less pronounced electrostatic shield effect provided by Li cations.

10.
Small Methods ; 5(12): e2100976, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928039

RESUMEN

Investigation of the mechanism of the water oxidation reaction for hematite photoanodes has been one of the most persistently pursued topics in the course of understanding photoelectrochemical water splitting by transition metal oxides. Unfortunately, existing experimental techniques often require over-simplified models and theories that assume only one reaction path. In this work, however, it is proposed that water oxidation on hematite can proceed via mixed reaction paths according to spectroelectrochemical results without a priori assumptions. The true absorption signals of surface states responsible for water oxidation are isolated from subsidiary signals for undoped and Ti-doped hematite and contrasted with those of inactive species. The evolution of absorption signals as a function of applied potential and illumination intensity highlights the non-negligible contribution of direct hole transfer, especially for highly doped hematite.

11.
Adv Mater ; 33(42): e2102134, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34480366

RESUMEN

Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm-2 ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi0.8 Co0.1 Mn0.1 O2 pouch cell is achieved with a specific energy of 380 Wh kg-1 for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries.

12.
Nano Lett ; 21(16): 6843-6850, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34347482

RESUMEN

Low-dimensional semiconductors have shown great potential in switches for their atomically thin geometries and unique properties. It is significant to achieve new tunneling transistors by the efficient stacking methodology with low-dimensional building blocks. Here, we report a one-dimensional (1D)-two-dimensional (2D) mixed-dimensional van der Waals (vdW) heterostructure, which was efficiently fabricated by stacking an individual semiconducting carbon nanotube (CNT) and 2D MoS2. The CNT-MoS2 heterostructure shows specific reconfigurable electrical transport behaviors and can be set as a nn junction, pn diode, and band-to-band tunneling (BTBT) transistor by gate voltage. The transport properties, especially BTBT, could be attributed to the electron transfer from MoS2 to CNT through the ideal vdW interface and the 1D nature of the CNT. The progress suggests a new solution for tunneling transistors by making 1D-2D heterostructures from the rich library of low-dimensional nanomaterials. Furthermore, the reconfigurable functions and nanoscaled junction show that it is prospective to apply CNT-MoS2 heterostructures in future nanoelectronics and nano-optoelectronics.

13.
Nanotechnology ; 32(19): 192002, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33498035

RESUMEN

Lithium/sulfur (Li/S) batteries have emerged as one of the most promising next-generation energy storage systems with advantages of high theoretical energy density, low cost and environmental friendliness. However, problems regarding to severe shuttle effect of soluble polysulfide, poor electronic/ionic conductor of solid charged/discharged products (S8 and Li2S), and fatal swell of volume along with the growth of Li dendrites greatly deteriorate the sulfur utilization and capacity retention during extended charge-discharge cycles. With advantages of high nitrogen content, lithiophilic modulation and tunable charge density and charge transfer, carbon nitride (g-C3N4) has played a positive role in restricting the shuttle effects and dendrite formation. This minireview mainly discusses these research achievements of g-C3N4 in Li/S batteries, aiming to provide a basic understanding and direct guidance for further research and development of functionalized g-C3N4 materials in electrical energy storage. The two-dimensional (2D) structure of g-C3N4 with abundant hierarchical pores improves its accommodation capacity for sulfur by effectively confining the lithium polysulfides (LiPSs) into the pores, and provides favorable channels for ion diffusion. The rich nitrogen and carbon defects further offer more active sites for strongly adsorbing LiPSs and bridge electron transfer pathway at atomic scale for catalytic reactions to accelerate redox kinetics of Li/S conversion chemistry. Moreover, the features of lithiophilic wettability, high adsorption energy and densely distributed lithiophilic N of g-C3N4 provide a large number of adhesive sites for lithium cation (Li+) and disperse the nucleation sites to enable uniform nucleation and deposition of Li on the anode surface and to suppress formation and growth of Li dendrites. Finally, the g-C3N4 also effectively regulates the wettability between Li anode and solid inorganic electrolyte, and reduces the crystallinity of solid polymer electrolyte to enhance the Li+ migration ability and ionic conductivity.

14.
Small ; 16(33): e1906499, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32656947

RESUMEN

For study of electrochemical reaction mechanisms at nanoscale, in situ electrochemical transmission electron microscopy (EC-TEM) exceeds many other methods due to its high temporal and spatial resolution. However, the limited amount of active materials used in previous in situ TEM studies prevents the model EC cells to operate in the constant-current (galvanostatic) charge/discharge mode that is required for accurate control of electrochemical processes. Herein, a new in situ EC-TEM technique is developed to investigate multi-step phase transitions of Mn3 O4 electrodes under the galvanostatic charge/discharge mode and constant-voltage discharge mode. In galvanostatic mode, the lithiation of Mn3 O4 undergoes multi-step phase transitions following a reaction pathway of Mn3 O4 + Li+ → LiMn3 O4 + Li+ → MnO + Li2 O → Mn + Li2 O. It is also found that lithium ions prefer to enter Mn3 O4 along the {101} direction to form LiMn3 O4 with the help of transitional boundary phase of Lix Mn3 O4 . These results are in sharp contrast to that obtained under a constant-voltage discharge mode, where only a single-step lithiation process of Mn3 O4 + Li+ → Mn + Li2 O is observed.

15.
Nanoscale ; 12(29): 15528-15559, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32678392

RESUMEN

The revival of lithium metal anodes (LMAs) makes it a potent influence on the battery research community in the recent years after the popularity of Li-ion batteries with graphite anodes. The main reason is due to the over ten-fold increase in the capacity of LMAs when compared with that obtained when using graphite, as well as the low redox potential of Li/Li+. However, the full potential of LMAs is heavily inhibited by several factors, such as dendrite growth, pulverization, side reactions, and volume changes. These adversities lower the cell's Coulombic efficiency dramatically if operated without massively excessive Li usage. In this review, we first introduce some of the most significant progresses made in the understandings of the charging/discharging processes at the anode. The importance of combining advanced characterization techniques with classical methods is highlighted. In particular, we aim to explore the hidden links between those studies for obtaining deeper insights. Two main categories of solutions to address common problems, namely, lithium-electrolyte interfacial engineering and three-dimensional hosting of Li, are subsequently illustrated, where each subsection takes a different methodological perspective to demonstrate the relevant state-of-the-art studies. Some interesting approaches to stop dendrites and a brief note on the practical aspects of lithium-metal batteries are provided, too. This review concludes with our essential discoveries from the current literature and valuable suggestions for future LMA research.

16.
ChemSusChem ; 13(13): 3404-3411, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32297467

RESUMEN

Lithium-sulfur batteries are among the most promising candidates for next-generation energy-storage systems due to its high theoretical energy density. However, the shuttle effect of polysulfides and sluggish reaction kinetics severely hinder the development of practical Li-S batteries. Merely depending on an adsorption strategy to resist the shuttle effect is insufficient to boost the overall electrochemical conversion reaction. Recently, single atom catalysts (SACs) have been used to solve this problem by decreasing the energy barriers of sulfur-species interconversion and Li2 S decomposition. Herein, the research progress made in using SACs in Li-S batteries is discussed, focusing on their functions and catalytic mechanism. The challenges and prospects for future application of SACs in electrochemical energy-storage systems are also discussed.

17.
ACS Appl Mater Interfaces ; 12(11): 12727-12735, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32090546

RESUMEN

Oxygen defect-rich iron oxide (ODFO) nanoparticle catalyst on nanocarbon is in situ synthesized with the assistance of multi-ion modulation in one pot. The nanoparticle catalyst is employed to propel electrochemical kinetics in lithium/sulfur batteries. Electrochemical analysis and theoretical simulation evidently verify the critical role of defect sites on catalyzing conversion reactions of sulfur species and reducing energy barriers. As a consequence, the ODFO-enhanced sulfur cathode exhibits a high specific capacity of 1489 mA h g-1 at 0.1 C, an excellent rate performance of 644 mA h g-1 at 10 C, and a superior cycling stability with an average capacity fading rate of as low as 0.055% per cycle under an ultrahigh rate of 10 C. More importantly, even with a high sulfur loading of 11.02 mg cm-2, the Li/S cell can still deliver an areal capacity of 8.7 mA h cm-2 at 0.5 C (9.23 mA cm-2). Such performance is the highest among reported metal oxide-catalyzed sulfur cathodes. This work opens a new route to boosting conversion reaction kinetics by introduction of active oxygen defect sites in electrodes of various emerging ultrafast batteries.

18.
Adv Sci (Weinh) ; 7(2): 1903603, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993298

RESUMEN

[This corrects the article DOI: 10.1002/advs.201800981.].

19.
Phys Chem Chem Phys ; 22(2): 556-563, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840700

RESUMEN

Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and it will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synthesis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by X-ray diffraction and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. Moreover, the transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).

20.
ACS Appl Mater Interfaces ; 11(47): 44196-44203, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31596071

RESUMEN

High power lithium-ion batteries require highly conductive electrodes. For an active electrode material that has limited electron conductivity, it is critical to build a carbon network that is not only highly conductive itself but also highly compatible with the electroactive material for efficient interfacial charge transfer. Herein, we design a multicomponent carbon network that is optimized for electrical coupling with the electroactive Nb2O5 nanorods for efficient electron injection. The self-support electrode is constructed by using 0D polypyrrole-derived (Ppy) carbon nanoparticles as glue to bind the Nb2O5 nanorods with 1D carbon nanotubes (CNTs) and 2D graphene nanosheets (GNSs). The 0D carbon nanoparticles also cross-link 1D CNTs with 2D GNSs, which can effectively prevent the GNSs from aggregation and form the 3D CNT/GNS network that provides continuous electronic and ionic pathways. This 3D Nb2O5@C self-support electrode exhibits a high discharge capacity of 246.3 mA h g-1 at 0.5 C and 100 mA h g-1 at 20 C and excellent Coulombic efficiency of 99.98% at 20 C. Even increasing the mass loading to 7.1 mg cm-2, the Nb2O5@C electrode can still reach a discharge capacity of 172.4 mA h g-1 at 0.5 C after 100 cycles. A high power density of 1043 W kg-1 can be achieved at an energy density of 104.3 W h kg-1 based on the electrode weight, which is among the highest values demonstrated so far for Nb2O5 electrodes. The results pave the way toward practical applications of Nb2O5 anodes in high-power lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...